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Theory of dark resonances for alkali-metal vapors in a buffer-gas cell
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We develop an analytical theory of dark resonances that accounts for the full atomic-level structure, as well
as all field-induced effects such as coherence preparation, optical pumping, ac Stark shifts, and power broad-
ening. The analysis uses a model based on relaxation constants, which assumes the total collisional depolar-
ization of the excited state. A good qualitative agreement with the experiments for Cs in Ne is obtained.
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I. INTRODUCTION

Nonlinear interference effects connected with the atom
ground-state coherence are now well known and widely u
@1#. One of the most promising classes of these effects,
pecially for precise measurements, is that of supernar
dark resonances@2–4# that appear in the medium’s respon
to bichromatic laser excitation when the laser frequency
ference is close to the atomic ground-state splitting. The
of vapor cells containing a buffer gas in addition to an alka
metal vapor has allowed the measurement of resonance
widths less than 50 Hz@5,6#. While such resonances hav
been extensively investigated experimentally~especially in
the case of Cs! @2#, a detailed theoretical understanding is n
yet well developed for realistic multilevel systems, motiva
ing the present work. Our theory was developed in clo
connection with ongoing efforts to construct compact atom
clocks @3,7–9# and magnetometers@2,4#. For any practical
application of dark resonances, the stability and accuracy
optimized with respect to parameters such as the output
nal amplitude, the width, and the shift. In the problem co
sidered here, many parameters, such as laser detunings
component polarizations and amplitudes, and buffer-
pressure, affect the dark resonance itself. In addition, var
excitation schemes~for example,D2 versusD1 line excita-
tion @10#! and different atomic isotopes can be used. A na
ral question arises: what design will optimize the perf
mance of the clock~or magnetometer!? Previous theories did
not completely answer this question. One main obstacle
connected with the complicated energy-level structure of
real atomic systems used in the experiments.

Generally speaking, there are several types of problem
the theoretical description of dark resonances. One prob
relates to a proper treatment of the relaxation processes in
system, including velocity-changing collisions@11# and the
spatial diffusion of coherently prepared atoms@12,13#. Light
propagation through coherently prepared nonlinear me
especially through optically thick media@14#, can be thought
of as another type of difficulty. This paper addresses ano
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important problem of field-induced processes in multilev
systems such as coherence preparation, optical pumping
Stark shifts, and power broadening. All existing theories c
be classified into three kinds: few-state models~basically,
three-stateL systems! @6,15,16#, perturbation theories@17#,
and numerical simulations@6,15#. All three classes of theo
ries have disadvantages. The first theory neglects many
tails of the actual configuration of atomic levels. Perturbat
theory neglects some effects induced by the presence o
optical field ~namely, optical pumping, ac Stark shifts, an
power broadening!. Numerical simulation theories demon
strate a lack of genuine understanding and predictive pow

This paper presents an analytical theory that accounts
the level structure~both Zeeman and hyperfine! of a real
atom, as well as all field-induced effects. The relaxation p
cesses are treated in the simplest way: by neglec
velocity-changing collisions and all effects connected w
the spatial inhomogeneity, we reduce the model to the
described simply by relaxation constants. The crucial
sumption is total collisional depolarization of the excite
state. In addition, we add the~optional! approximations of
homogeneous broadening and low saturation. With these
proximations, a general analytical result is obtained for
atomic response, which result is valid for arbitrary excitati
schemes (D2 as well asD1 lines!, light field polarizations,
and magnetic fields. In the specific case of circularly pol
ized light in the presence of a magnetic field, where only t
states participate in the coherence preparation, analytical
shapes~generalized Lorentzian! coincide exactly with the
phenomenological model heuristically introduced previou
to fit experimental data@18#. In the case of zero magneti
field, and when the contributions of different Zeeman su
states are well overlapped, the resonance line shape is
approximately described by the generalized Lorentzian
comparison of analytically calculated coefficients of t
model ~with no free parameters! with coefficients extracted
from the experimental data demonstrates a good qualita
agreement.

II. STATEMENT OF THE PROBLEM

In this section, the general framework of the problem
described, the basic assumptions we make are stated, an
©2003 The American Physical Society10-1
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specific procedure for calculating the quantities of interes
outlined. We consider the resonant interaction of alkali-me
atoms in theS1/2 ground state with a two-frequency las
field

E~z,t !5E1 exp@2 i ~v1t2k1z!#

1E2 exp@2 i ~v2t2k2z!#1c.c., ~1!

where both components propagate in the positive direc
(k1,2.0). The field can excite atoms either to theP1/2 state
(D1 line! or to theP3/2 state (D2 line!. Two hyperfine~HF!
components are present in the ground state with the t
angular momentaF15I 11/2 andF25I 21/2 ~whereI is the
nuclear spin!. The HF splitting in the ground state,D5(E1
2E2)/\, is in the range 1–10 GHz. The excited state has
(D1 line! or four (D2 line! HF levels with the angular mo
mentaFe5I 2Je , . . . ,I 1Je and the energiesEe5\ve . The
HF splitting of the excited state is typically one order
magnitude smaller thanD. To be more specific, we assum
that the frequencyv1 is close to resonance with theF1
→Fe transitions, while the other frequencyv2 is close to the
frequencies of theF2→Fe transitions. Thus, we have
L-type excitation scheme~Fig. 1!. In the absence of an ex
ternal B field, the HF levels are degenerate with respect
the total angular-momentum projections. For the Zeem
substates, the following shorthand notations will be us
ue&5uFe , me& with me52Fe , . . . ,Fe , and u i ,m&
5uFi , m& with m52Fi , . . . ,Fi( i 51,2).

For simplicity, we consider first an atom at rest, po
tioned at the origin (z50). Each frequency component o
the field can, in principal, induce transitions from bo
ground-state HF levels. Then the interaction Hamiltonian
the dipole approximation contains contributions of tw
kinds:

ĤD2E52 (
e,i ,m

ue&^eu~ d̂•Ei !u i ,m&^ i ,mu

2 (
e,iÞ j ,m

ue&^eu~ d̂•Ei !u j ,m&

3^ j ,mue2 i (v i2v j )t1H.c., ~2!

where we use a rotating frame~the unitary transformation o
the ground-state basisu i ,m&→exp(ivit)ui,m&), and d̂ is the

FIG. 1. Excitation scheme.
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dipole moment operator. The first term in Eq.~2! is indepen-
dent of time in the rotating basis, and we refer to it as
resonant contribution. The second term, oscillating at the
ference frequency, results in the off-resonant contribution
the optical shifts and optical pumping rates, as well as
temporal oscillations of the atomic density matrix. The ro
of the off-resonant term in the case of a three-levelL system
has been studied in great detail@16#. The amplitudes of the
oscillating parts of the density matrix can be approximated
udEu2/(\D)2. For the moderate field intensities consider
here (,10 mW/cm2), this ratio is very small,udEu2/(\D)2

;102621028, and the oscillating terms can be safely n
glected. However, the off-resonant contributions to the o
cal energy shifts and widths can be significant, especially
the case of large one-photon detunings.

Hamiltonian for a free atom in the rotating frame can
written as

Ĥ052(
e

\~dL2ve!ue&^eu2\
dR

2

3(
m

~ u1,m&^1,mu2u2,m&^2,mu!. ~3!

HeredL5(d11d2)/2 is the average one-photon detuning,dL
and ve are measured from a common zero level~for ex-
ample, from the HF level with maximal momentumFe5I
1Je), and dR5d22d15v22v12D is the Raman~two-
photon! detuning.

Since this paper is concerned with the field-induced
fects in multilevel atomic systems, the relaxation proces
are modeled by several constants. The homogeneous br
ening of the optical line, due mainly to collisions with
buffer gas, is described by the constantg. We assume tha
the excited state is completely depolarized due to collisi
during the radiative lifetimete , i.e., the depolarization rate
gk obey the condition

gk te@1. ~4!

The relaxation of the ground-state density matrix to the i
tropic equilibrium, both due to the diffusion through th
laser beam and due to collisions, is modeled by a sin
constantG.

Under the assumption of moderate field intensities a
high buffer-gas pressure, we develop the theory in the lo
saturation limit:

udEu2

\2
!

g

te
. ~5!

The two-photon dark resonance appears when the Ra
detuningdR is scanned around zero. The width of the da
resonance, which is related to the ground-state relaxatio
usually six orders of magnitude smaller than the optical lin
width g. The approximationdR!g is therefore suitable.

It should be stressed that all approximations are well j
tified for typical experimental conditions. For example,
the case of Cs in a background Ne atmosphere at a pres
0-2
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THEORY OF DARK RESONANCES FOR ALKALI-METAL VAPORS . . . PHYSICAL REVIEW A 67, 033810 ~2003!
of p510 kPa, the homogeneous broadeningg
'2p860 MHz @19# of the optical line exceeds the Dopple
width kv̄'2p300 MHz, so velocity-changing collisions ar
inconsequential. The collisional depolarization rategk
'2p70 MHz @20# is large compared to the inverse radiati
lifetime 1/te52p5.3 MHz. The Rabi frequencyudEu/\
'1/te for the field intensity 8.8 mW/cm2, which results in a
saturation parameter (udEu/\)2te /g'1022. The two-photon
detuning is scanned in the rangeudRu,2p1 MHz, and the
ground-state relaxation rate can be estimated to beG
'2p53 Hz @12,21#.

Eliminating optical coherences with these approximatio
~for details see the Appendix!, we arrive at the following se
of equations for the ground-state density submatrix (ŝgg

5P̂gŝP̂g):

d

dt
ŝgg52 i @Ĥeffŝgg2ŝggĤeff

†#1S pe

te
1G D P̂g

ng
, ~6!

Tr$ŝgg%51, ~7!

where P̂g5(m(u1,m&^1,mu1u2,m&^2,mu) is the ground-
state projector,ng52(2I 11) is the total number of sub
states in the ground state, andpe is the total population of
the excited state. The first term (}pe) of the source in Eq.
~6! corresponds to the isotropic repopulation of the grou
state sublevels due to the spontaneous decay of the ex
states. The other term (}G) describes the entrance of unp
larized atoms due to diffusion and collisions. Due to t
conservation of the total number of particles~7!, separate
dynamic equations for the excited-state density-matrix e
ments are not needed. Both the dynamics and steady sta
completely governed by the non-Hermitian ground-st
Hamiltonian:

Ĥeff52
dR

2 (
m

~ u1,m&^1,mu2u2,m&^2,mu!1R̂2 i
G

2
P̂g .

~8!

Here the excitation matrix

R̂5 (
i , j ,e,m,m8

u i ,m&
^ i ,mu~ d̂•Ei !

†ue&^eu~ d̂•Ej !u j ,m8&

\2@~dL2ve!1 ig/2#
^ j ,m8u

1 (
iÞ j ,e,m,m8

u i ,m&
^ i ,mu~ d̂•Ej !

†ue&^eu~ d̂•Ej !u i ,m8&

\2@~dL1v j2v i2ve!1 ig/2#

3^ i ,m8u ~9!

contains the resonant~first summation! as the well as the
off-resonant~second summation! contributions to the optica
shifts and optical pumping rates~Hermitian and anti-
Hermitian parts, respectively!. The nondiagonal (iÞ j ) ele-
ments of the resonant term induce the Raman coherence
tween the HF levels of the ground state responsible for
dark resonance.

The generic matrix element in Eq.~9! is calculated from
the Wigner-Eckart theorem:
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^ i ,mi u~ d̂•Ek!
†ue&^eu~ d̂•El !u j ,mj&

5u^JeuuduuJg&u2 r ~Fe ,Fi ! r ~Fe ,F j !

3(
K, q

~21!Fe1F j 1K

3H 1 1 K

Fi F j Fe
JA2K11~21!Fi2mi

3S Fi K F j

2mi q mj
D $Ek* ^ El%K q , ~10!

where^JeuuduuJg& is the reduced matrix element of the dipo
moment and

r ~Fe ,Fi !5A~2Je11!~2Fe11!~2Fi11!H Jg Je 1

Fe Fi I J
is the partial coupling amplitude of theFi→Fe transition. In
the general case, we have scalar (K50), vector (K51), and
quadrupole (K52) contributions. All possible selection rule
are contained in the coefficients of vector coupling, i.e.,
6 j and 3jm symbols.

For an atom moving along the direction of propagation
the optical field, the field frequencies are shifted due to
Doppler effect,v i→v i2kiv. As a result, a Doppler shift o
the one-photon detuningdL→dL2kv occurs, wherek5(k1
1k2)/2, as does a residual Doppler shift of the Raman
tuning dR→dR2(k22k1)v. At high buffer-gas pressure th
residual Doppler shift is suppressed due to the Lamb-Di
effect@12,22#. However, in the general case the Doppler sh
of the one-photon detuning can be significant, and cer
quantities must be averaged over the Maxwell velocity d
tribution. Nevertheless, for buffer-gas pressures typica
used in experiments, the approximation of homogene
broadening is reasonable, as a first approach to the prob
because the homogeneous widthg equals or even exceed
the Doppler widthkv̄.

Here we consider the steady-state regime, set
(d/dt)ŝgg50 in Eq. ~6!. As a spectroscopic signal, we con
sider the total excited-state populationpe which is propor-
tional to the total light absorption in optically thin media o
to the total fluorescence. The following procedure is used
find pe . From Eq.~6!, the ground-state density matrixŝgg is
expressed in terms ofpe , and thenpe is calculated from the
normalization condition~7!. The solution of this algebraic
problem can be obtained in a compact analytical form in t
important special cases. The first arises when both field c
ponents have the same simple~circular or linear! polarization
and there is no magnetic field. Here, for a suitable choice
the quantization axis, the excitation matrixR̂ contains only
diagonal elements with respect to the magnetic quan
number, i.e.,m5m8 in Eq. ~9!. The second case appea
when a magnetic field is applied and just a few substa
contribute to the Raman coherence for arbitrary light pol
izations and arbitrary magnetic-field directions. Both ca
are considered below.
0-3
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III. SIMPLE LIGHT POLARIZATION
„NO MAGNETIC FIELD …

We turn now to the case of circular field polarizatio
when the quantization axis is directed orthogonal to the
larization vector~or alternatively linear polarization whe
the quantization axis is aligned along the polarization v
tor!. We evaluate the total excited-state populationpe in or-
der to determine how the dark resonance signal~proportional
to pe) depends on parameters such as the optical detu
from resonance. Under these assumptions, the complet
of equations~6! can be split into independent blocks for ea
magnetic quantum numberm (m blocks!. These blocks for
m56F1 contain only one equation for the substate popu
tion p (6F1). The other blocks withmÞ6F1 contain four
equations~two for the populations and two for the Rama
coherences!, corresponding to an effective two-level syste
with the upperu1,m& and lower u2,m& states~Fig. 2!. The
parameters of the two-level system are expressed in term
matrix elements ofR̂ as follows: the population relaxatio
rates G̃ i5G1Ri

(m) include the optical pumping ratesRi
(m)

52 Im$^ i ,muR̂u i ,m&%; the dephasing rate isG̃125(G̃1

1G̃2)/2; the effective detuningd̃R5dR2(S1
(m)2S2

(m)) in-

cludes optical shiftsSi
(m)5Re$^ i ,muR̂u i ,m&%; and the coher-

ence between levels is excited by the complex couplingV

2 iU 5^1,muR̂u2,m&. Note that the phase of the matrix el
ment ^1,mu(d̂•E1)†ue&^eu(d̂•E2)u2,m& can be chosen equa
to zero without loss of generality, so that^2,muR̂u1,m&
5^1,muR̂u2,m&.

Both the upper and lower states are repopulated with
same rateb5(pe /te1G)/ng . First the totalm-block popu-
lation p (m)5p1

(m)1p2
(m) per unit repopulation rate is found

For the outermost blocks,m56F1 , p (6F1)51/(G
1R1

(6F1)). The result formÞ6F1 is a quotient of polyno-

FIG. 2. Effective two-level system, corresponding to onem
block.
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mials of second order in the effective detuning,

p (m)5
A d̃R

21B

C d̃R
21D d̃R1E

, ~11!

where

A5G̃11G̃2 , B5G̃12@G̃12~ G̃11G̃2!18 V2#;

C5G̃1G̃2 , D54 UV~ G̃12G̃2!; ~12!

E5G̃12
2 G̃1G̃212 G̃12~ G̃11G̃2!~V22U2!216U2V2.

The repopulation rate, corresponding to unit total populat
in all m blocks, is

b5F (
m52F1

F1

p (m)G21

, ~13!

and the total excited-state population is finally expressed

pe5te~ngb2G!. ~14!

In the general case, when polarizations of the field co
ponents are different, or the same but elliptical, there is
basis where the matrices^1,muR̂u1,m8&, ^2,muR̂u2,m8&, and

^1,muR̂u2,m8& are simultaneously diagonal. In this situatio
the full equation set for the ground-state density-matrix e
ments must be solved, including all possible Zeeman
Raman coherences. Nevertheless, one important exce
should be noted. If the optical linewidth is much greater th
the excited-state HF splittingg@(ve, max2ve, min), the quad-
rupole contributions toR̂ are negligible@17#. The vector
terms are diagonal~with respect to the magnetic quantu
number! in the coordinate frame withz as the quantization
axis, since@Ei* 3Ej #}ez . Thus, we return to the case dis
cussed above.

IV. DARK RESONANCES IN A MAGNETIC FIELD

In a weak magnetic field, the ground-state magnetic s
levels are split due to the linear Zeeman effect, which can
described by the following additional term in the effectiv
Hamiltonian~8!:

ĤB5(
i ,m

mV i u i ,m&^ i ,mu. ~15!

Here the quantization axis is directed along the magn
field, andV i5mBgiB/\ are the Zeeman splitting frequencie
with mB the Bohr magneton andB the magnetic flux density
The g factors of levelsgi are expressed through the ele
tronic gJ and nucleargI Lande factors:

g1,256
gJ2gI

2 I 11
1gI .

The magnetic field causes a precession of atomic cohere
with frequenciesm V i2m8 V j . When the Zeeman frequen
0-4
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cies are much larger than the off-diagonal elements of
excitation matrix V i@u^ i ,muR̂u i ,m8&u, the light-induced
Zeeman coherences within thei th HF level are negligible.
Thus, we again have a set of independent two-level syste
consisting of the substatesu1,m1& and u2,m2& ~where um1
2m2u<2 due to the selection rules!. The formulas~11! and
~12! for the total block population are still valid for ever
(m1 , m2) block with the following substitutions:

G̃ i5G1Ri
(mi ) ,

d̃R5dR2~S1
(m1)

2S2
(m2)

!2~m1V12m2V2!;

V2 iU 5^1,m1uR̂u2,m2&5^2,m2uR̂u1,m1&. ~16!

If the Zeeman frequencies significantly exceed the wid
G̃ i , the Zeeman-split dark resonances are well resolved
other words, the Raman coherence between the subs
u1,m1& andu2,m2& is effectively induced when the precessio
frequency is approximately equal to the Raman detun
dR'm1 V12m2 V2. This condition can be simultaneous
satisfied for only a few (m1 , m2) blocks. More precisely, the
nuclear Lande factor is typically three orders of magnitu
smaller than the electronic Lande factor~for cesiumgJ /gI
'2500); then, with good accuracy,V152V25V and the
Zeeman shift of the dark resonance position is proportio
to the sum of magnetic quantum numbersnV5(m1
1m2) V. It can be seen that, in the general case, th
blocks (m, m), (m21,m11), and (m11,m21) contribute
to the coherence preparation for the resonances with e
shifts 2m V, and two other blocks (m21,m) and (m, m
21) contribute for the resonances with odd shifts (2m
21) V. WhendR is tuned around the resonance with giv
shift n V, the repopulation rateb can be written as

b5FZ1 (
m11m25n

p (m1 ,m2)~ d̃R!G21

,

where the first summandZ does not depend on the Rama
detuning:

Z5 (
m11m2Þn

S 1

G1R1
(m1) 1

1

G1R2
(m2)D ,

and p (m1 ,m2) is the total population of the (m1 , m2) block.
Owing to the nuclear contribution, a further increase of
magnetic field causes the dark resonances to be event
split into individual peaks, corresponding to each (m1 , m2)
block @23#.

V. THE RESONANCE LINE SHAPE

We now consider the dark resonance line shape in m
detail. First, we analyze the particular case in which just t
substatesu1, 0& and u2, 0& participate in the Raman cohe
ence, i.e., we consider the magnetically insensitive resona
(m50) in a magnetic field. This (0, 0) resonance is of p
mary interest for possible clock applications@2,3,7# because
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it is only sensitive to a magnetic field in second order. He
the absorption signalnDR9 has the form

nDR9 5
pe

te ng
5

1

Z1p (0)~ d̃R!
2

G

ng
,

Z5 (
mÞ0

S 1

G1R1
(m)

1
1

G1R2
(m)D , ~17!

wherep (0) is the total population of the (m50) block per
unit repopulation rate@see Eqs.~11! and~12!#. Sincep (0) is
a quotient of polynomials of second order indR , the absorp-
tion can be written as the sum of an absorptive Lorentz
and a dispersive Lorentzian, and a constant background

nDR9 52C1

~ g̃/2!2

~ g̃/2!21~dR2d0!2
1C2

~dR2d0! g̃/2

~ g̃/2!21~dR2d0!2

1const. ~18!

The parameters in Eq.~18! are expressed in terms of th
coefficients introduced by Eq.~12! in the following way. The
dark resonance position is governed by the optical shifts
an additional term caused by the two-photon coupling
tween levels:

d05~S1
(0)2S2

(0)!1x, x52
DZ

2 ~A1CZ!
. ~19!

The width of dark resonance reads

~ g̃/2!25
B1EZ

A1CZ
2x2. ~20!

The amplitudes of the symmetrical and antisymmetri
Lorentzians are found from the relations

C1~ g̃/2!25
BC2AE2xAD

~A1CZ!2
, ~21!

C2g̃/25
AD

~A1CZ!2
. ~22!

The background constantC/(CZ1A)2G/ng corresponds to
the absorption far off the two-photon resonance.

The result~18! for the resonance line shape is quite ge
eral. In fact, it does not depend on our simplified assum
tions on the relaxation processes, but is valid also in
low-saturation limit for arbitrary relaxation matrix, whenev
only two states participate in the coherence preparation
dR!g.

Turning to the case of zero magnetic field and simple fi
polarization, we proceed with the goal of determining t
resonance position, width, and amplitudes of the symmetr
and asymmetrical components as above. Since all Zee
levels within a given hyperfine level are now degenerate,
rewrite the repopulation rateb ~13! as
0-5
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b5@Z1~2F211!^p̃ (m)~dR!&m#21, ~23!

where

Z5 (
m52F1

m5F1 S 1

G1R1
(m)

1
1

G1R2
(m)D

does not depend ondR and corresponds to the absorption f
off the two-photon resonance; the sum of the variable p
of the m block populationsp̃ (m)(dR) is expressed through
the average overm-blocks, where the average of a variableX
is defined as

^X(m)&m5
1

2F211 (
m52F2

m5F2

X(m).

Sincep̃ (m)(dR) is a quotient of polynomials of second orde

p̃ (m)~dR!5
a2

(m)dR1b2
(m)

dR
21a1

(m)dR1b1
(m)

,

a1
(m)5

D

C
2~S1

(m)2S2
(m)!,

b1
(m)5

E

C
2~S1

(m)2S2
(m)!

D

C
1~S1

(m)2S2
(m)!2,

a2
(m)5

A D

C2
, b2

(m)5
B C2A E1A D ~S1

(m)2S2
(m)!

C2
,

~24!

the averagêp̃ (m)(dR)&m is a quotient of polynomials of or
der 2 (2F211). Generally this average describes a super
sition of resonances with different widths and positions d
to them-dependent power broadening and ac Stark shifts,
if the laser detuning is not too large,udLu<D, all resonances
are well overlapped, and the average^ p̃ (m)(dR)&m can be
approximated by a quotient of polynomials of second ord
Here we use the following simple procedure, where the
erage of a quotient is substituted by a quotient of the av
ages:

^p̃ (m)~dR!&m'a
^a2

(m)&mdR1^b2
(m)&m

dR
21^a1

(m)&mdR1^b1
(m)&m

, ~25!

and where the correction factora is chosen such that th
exact and approximate expressions coincide atdR50, i.e.,

a5
^b1

(m)&m

^b2
(m)&m

K b2
(m)

b1
(m)L

m

.

Our approximation forb yields an error less than a few
percent across a wide range of parameters. With this appr
mation, we return to the resonance line shape~18!, where the
parameters are expressed in terms of the averages overm:
03381
ts

-
e
ut

r.
-
r-

xi-

d052
^a1

(m)&m

2
2

~2F211! a

Z

^a2
(m)&m

2
,

~ g̃/2!25^b1
(m)&m1

~2F211! a

Z
^b2

(m)&m2d0
2 ,

C1 ~ g̃/2!25~2F211! a
^b2

(m)&m1^a2
(m)&md0

Z2
,

C2 ~ g̃/2!5~2F211! a
^a2

(m)&m

Z2
,

const5
1

Z
2

G

ng
. ~26!

VI. COMPARISON WITH EXPERIMENT

The analytical line shape~18! coincides exactly with the
phenomenological model heuristically introduced previou
to fit experimental data@18#. In those experiments a vertica
cavity surface-emitting laser was modulated at the 9.2-G
hyperfine splitting frequency of the cesium atom, so that
laser output spectrum contained modulation sidebands at
frequency. Using the carrier and one of the sidebands,
dark resonance could be prepared and spectroscopically
served as a function of detuningdL of the laser frequency
from optical resonance. Data were taken for three differ
power ratios of the carrier and sideband, with the cesi
atoms contained in a cell with 8.7 kPa of neon as a bu
gas. Detection used a modulation technique that allowe
extract simultaneously the absorption and the dispersion
shape@24#. For each detuningdL , both line shapes were
simultaneously fitted by the model function~18!, with C1 ,
C2 , g̃, andd0 as free parameters. Actually, as far as the l
shapes themselves are concerned, this is a two-paramet
C2 /C1 and g̃ describe the shape, and the rest the ove
amplitude and position of the dark line.

Since these experimental data for Cs in Ne are fitted
Eq. ~18! quite well, we can compare analytically calculate
coefficients of the generalized Lorentzian to those extrac
from the experimental data. The dependence of the co
cients on the total light intensityI}uE1u21uE2u2 is almost
trivial, at least when the power broadening (R1

(m)1R2
(m))/2

exceeds the dephasing rateG in zero field—all the param-
etersC1 , C2 , d0, and g̃ scale asI. Thus, the most repre
sentative test is provided by the dependence of the co
cients on the one-photon detuningdL and on the intensity
ratio R5uE1u2/uE2u2 between the two field component
Such comparisons with experimental fit parameters fr
Ref. @18# are presented in Figs. 3–6, whereC1 , C2 , d0, and
g̃ are plotted as functions ofdL for three different relative
intensities,R. The other parameters used in the calculatio
correspond to the experimental conditions: excitation bys1

polarized radiation, total intensityI50.4 mW/cm2, optical
linewidth g52p750 MHz, and ground-state relaxation ra
G52p150 Hz. We use no free parameters, just a sin
0-6
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trivial scaling factor forC1 andC2 and a constant offset fo
d0 that accounts for the collisional shift of the dark res
nance position.

We see a good qualitative agreement, especially for
resonance positiond0 and for the widthg̃. There are some
noticeable discrepancies for the amplitudesC1 and C2. In
particular, we can see that the theoretical curve forC1 can
cross the zero level at largedL , which can be attributed to
the well-known Raman absorption, but is not observed in
experimental data.

VII. D2 LINE EXCITATION AND CONNECTION
TO PREVIOUSLY EXISTING THEORIES

In the specific case of theD2 line of Cs at high buffer-gas
pressure, the two-photon amplitudesU and V are much
smaller than the optical pumping ratesRi

(0) and the optical
shifts Si

(0) , respectively, because the most probable opt
transitionsF1→Fe5I 1Je andF2→Fe5I 2Je contribute to
the one-photon transitions but not to the two-photon Ram
coupling. Note that the ratio betweenV and Ri

(0) can be
arbitrary, depending on the one-photon detuningdL . As a
result, the part of the absorption signal that varies withdR is
small compared to the constant one, and we arrive, to low
orders, at the following approximate expressions. The
rameter

FIG. 3. Absorptive coefficientC1 versus optical detuningdL .
Plots~a!, ~b!, and~c! are forR52.4, 7.2, and 22, respectively. Th
solid lines indicate the theoretical predictions, while the points
dicate the experimental data taken from Ref.@18#.
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x'2
D

2 C
5

2 ~ G̃12G̃2! U V

G̃1G̃2

is negligible with respect to the other contributions ind0 , g̃,
and C1. The resonance position offset and the width a
approximated as

d0'S1
(0)2S2

(0) ,

~ g̃/2!2'
E

C
'G̃12

2 1
~ G̃11G̃2!2

G̃1G̃2

V2. ~27!

The amplitudesC1 andC2 are given by Eqs.~21! and ~22!

with x50 andg̃ from Eq. ~27!.
These results can be compared with those for a three-l

L system in the low-saturation limit. Our formulas~18!–~22!
will describe this last case, as well, if we setZ50, i.e.,

d05S1
(0)2S2

(0) , ~ g̃/2!25
B

A
5G̃12

2 14 V2,

C1~ g̃/2!25
BC2AE

A2
, C2g̃/25

D

A
. ~28!

-

FIG. 4. Dispersive coefficientC2 versus optical detuning,dL .
Plots~a!, ~b!, and~c! are forR52.4, 7.2, and 22, respectively. Th
solid lines indicate the theoretical predictions, while the points
dicate the experimental data.
0-7
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Thus, the results are qualitatively similar~the main differ-
ences are the overestimated amplitudesC1 andC2), but now
all parameters are unambiguously defined for the ac
atomic structure.

WhenC250 the line shape is symmetrical, and occurs
V50 or G̃15G̃2. The first condition generalizes todL50,
and the second corresponds to the condition of equal R
frequencies in a simpleL system.

When V50, the amplitude of the symmetrical signal
proportional to the square of the two-photon coupling:

C1'
2 ~ G̃11G̃2!2

G̃12~ G̃11G̃21ZG̃1G̃2!2
U2, ~29!

which is a key point of the perturbative studies@17# but now,
in addition, all effects of the optical pumping are accoun
for in the prefactor in Eq.~29!.

VIII. DARK RESONANCE POSITION: THREE
POSSIBLE DEFINITIONS

The center position of the dark resonance in essence
termines the output frequency of the frequency referenc
the magnetic field indicated by the magnetometer. Espec
for asymmetrical resonances, it is somewhat unclear exa
how that center position is defined. The quantityd0 above is

FIG. 5. Frequency shiftd0 versus optical detuningdL . Plots~a!,
~b!, and~c! are forR52.4, 7.2, and 22, respectively. The solid lin
indicate the theoretical predictions, while the points indicate
experimental data.
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one possible definition of the resonance position, cor
sponding to the combined minimum of the absorptive pa
and zero of the dispersive part, of the resonance describe
Eq. ~17!.

Using Eqs.~18!–~22!, one can easily find another possib
definition of the resonance center: the Raman detuning
responding to minimum absorption,

dmin5S1
(0)2S2

(0)1
G̃12~ G̃22G̃1!

G̃11G̃2

V

U
. ~30!

A third possible definition is the pointy0, where the disper-
sion nDR8 associated with the absorption~18! ~by the
Kramers-Kronig relations! is equal to zero. This is found to
be

y05d02
g̃

2

C2

C1
. ~31!

Each of these three quantities,dmin , y0, and d0, could be
considered the resonance center, depending on how the
nance is measured experimentally. In the general asymm
cal case, whenVÞ0 ~nonzero effective one-photon detun
ing! and G̃1ÞG̃2 ~unbalanced optical pumping rates!, all

e

FIG. 6. Dark resonance widthg̃ versus optical detuningdL .
Plots~a!, ~b!, and~c! are forR52.4, 7.2, and 22, respectively. Th
solid lines indicate the theoretical predictions, while the points
dicate the experimental data.
0-8
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three values are different. Even their behavior versusdL is
qualitatively different ~Fig. 7!, near the one-photon reso
nance (V50) the centroidd0 of the Lorentzians has a dis
persionlike shape, whiledmin is rather of an absorptive na
ture, andy0 has a more complicated shape of mixed type.
addition,d0 and dmin are always finite, whereasy0 goes to
infinity at the zeros ofC1. These different dependences o
optical detuning could, for example, alter the sensitivity
the frequency reference or magnetometer to the optical
point. As a result, careful consideration must be given to
resonance detection method while designing frequency
erences or magnetometers based on dark resonances.

IX. CONCLUSION

Using very simple assumptions about the relaxation p
cesses, analytical results can be obtained for the nonli
absorption of bichromatic radiation near a two-photon re
nance. The theory fully takes into account both the HF a
the Zeeman level structures of alkali-metal atoms, as we
all light-induced effects. Our results constitute a good ba
for understanding experimental works, and further poss
refinements of theory are possible. In particular, the cas
large Doppler widthkv̄.g can be immediately studied b
the substitutiondL→dL2kv followed by averaging over the
Maxwell distribution.

In addition, the theory allows for a simple parametrizati
of experimentally measured dark resonances in terms of
sorptive and dispersive components. The theory can th
fore predict, for example, the detuning for which the disp
sive part of the resonance is minimized and, for a giv
detuning, the asymmetry in the resonance line shape
might be expected. The analysis of different definitions
the resonance center position is also of interest for prac
applications based on dark resonances such as atomic
quency standards and magnetometers. It appears likely
the additional understanding gained by the thorough theo

FIG. 7. Three possible definitions of the dark resonance p
tion. The centroidd0 corresponds to the solid line,dmin corresponds
to the dotted line, andy0 corresponds to the dash-dotted line. A
curves are calculated for the CsD2 line. The parameters areI
545 mW/cm2, R50.5, andg52p850 MHz.
03381
n

f
k
e
f-

-
ar
-
d
s

is
le
of

b-
e-
-
n
at
f
al
re-
at
t-

ical analysis presented here will lead to further refinem
and development of current and future applications based
dark resonances.
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APPENDIX: DERIVATION OF EQ. „6…

In this appendix we consider in detail the derivation of t
basic equation set~6!. As is well known the atomic density
matrix obeys the generalized optical Bloch equation. Acco
ing to this equation, the evolution of the density matrix c
be split into two parts. The reversible one (d/dt ŝ

52 i /\@Ĥ,ŝ#) is governed by the total Hamiltonian of a
atom in a resonant external fieldĤ5Ĥ01ĤD2E . The irre-
versible part originated from the interaction with enviro
ments~e.g., buffer gas or vacuum modes of electromagne
field! are modeled by relaxation~super!operators of various
kinds. The concrete form of the relaxation terms will b
specified in the course of the derivation.

The first stage is the elimination of the optic
coherences ŝeg5P̂eŝP̂g , where the operator P̂e
5(me

uFe ,me&^Fe ,meu projects on the given HF componen
of the excited state. In the low-saturation limit, the optic
coherence matrix obeys the following equation in the rot
ing frame:

F d

dt
1g/22 i ~dL2ve!G ŝeg

5
i

\ H (
i 51,2

P̂e~ d̂•Ei !P̂ i

1(
iÞ j

P̂e~ d̂•Ei !P̂ je
2 i (v i2v j )tJ ŝgg . ~A1!

On the left-hand side, the Raman detuningdR is small com-
pared to the homogeneous widthg (udRu!g); P̂ i

5(muFi ,m&^Fi ,mu, so thatP̂g5P̂11P̂2. As is explained
in the main text, the oscillations of the ground-state dens
submatrixŝgg can also be safely neglected in the rotati
frame. Then, in the stationary regime (gt@1) the solution of
the equation~A1! is

ŝeg5
i

\ H (
i 51,2

P̂e~ d̂•Ei !P̂ i

g/22 i ~dL2ve!

1(
iÞ j

P̂e~ d̂•Ei !P̂ je
2 i (v i2v j )t

g/22 i ~dL2ve!2 i ~v i2v j !
J ŝgg . ~A2!

i-
0-9
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Under the conditions considered here, the equation for
ground-state density submatrix can be written as

d

dt
ŝgg52G~ŝgg2ŝgg

(0)!2
i

\
@Ĥ0 ,ŝgg#

2
i

\
~P̂g ĤD2E ŝP̂g2H.c.!1Â$ŝee%, ~A3!

where the line over operators indicates time averaging,
all the oscillating terms should be removed from the prod
ĤD2E ŝ. Using Eq.~A2!, one finds that

2
i

\
P̂g ĤD2E ŝP̂g52 i R̂ ŝgg ,

whereR̂ is the excitation matrix given by Eq.~9!. The first
term on the right-hand side of Eq.~A3! describes the relax
ation in the ground state~due to both diffusion and colli-
sions! toward the equilibrium distribution outside the las
beam, ŝgg

(0)5P̂g /ng . All the linear ~with respect toŝgg)

terms, containingG, Ĥ0, and R̂, can be combined in the
effective non-Hermitian Hamiltonian~8!. The last term on
the right-hand side of Eq.~A3! corresponds to the spontan
ous radiative transfer of atoms from the excited states, gi
by the density submatrix ŝee5P̂e ŝP̂e ~where P̂e

5(Fe
P̂e), to the ground-state levels. Its structure will b

specified below.
In the low-saturation limit, the matrixŝee obeys the equa

tion

d

dt
ŝee52

1

te
ŝee2

i

\
@Ĥe ,ŝee#2Ĝ$ŝee%

2
i

\
~P̂eĤD2E ŝP̂e2H.c.!, ~A4!

where the first three terms on the right-hand side describe
radiative decay, the HF splitting (Ĥe5\(Fe

vePe), and the
collisional depolarization of the excited state, respective
the last term corresponds to the excitation due to lig
03381
e

.,
t

n

he

;
t-

induced transition from the ground-state levels. This l
term can be considered as a source, because it is proport
to ŝgg :

2
i

\
P̂eĤD2EŝP̂e

5
1

\2 (
Fe ,Fe8

S (
i , j

P̂e8~ d̂•Ei !P̂ i ŝggP̂ j~ d̂•Ej !
†P̂e

g/21 i ~dL2ve!

1(
iÞ j

P̂e8~ d̂•Ei !P̂ j ŝggP̂ j~ d̂•Ei !
†P̂e

g/21 i ~dL2ve1v i2v j !
D .

The structure of the collisional termĜ$ŝee% can be found in
Ref. @20#. Here we simply recall that during the course of
collision only the electronic component of the atomic pola
ization is depolarized. The nuclear component is involved
the process of depolarization due to the HF coupling. For
alkali-metal atoms, the excited-state HF splittingDe is much
greater than radiative decay rate 1/te . In addition, we as-
sume that the collisional relaxation ratesgk for the excited-
state electronic multipole moments of rankk51, . . . ,2Je
11 also obey the conditionsgkte@1 ~for k50, we assume
g050, i.e., the collision-induced transitions between t
fine-structure components are not considered here!. In this
limit, Dete@1 andgkte@1, the steady-state solution of Eq
~A4! has particularly simple form

ŝee5pe

P̂e

ne
, pe5te~ i Tr$R̂ ŝgg%1c.c.!, ~A5!

which corresponds to total collisional depolarization of t
excited state.

Here we shall illustrate this fact in one specific case, wh
the excited-state HF splitting is much larger than the de
larization ratesgk and when all the depolarization rates~ex-
cept forg0) are the same~so-called pure electronic random
ization model@20#!. If De@gk ,1/te , one can neglect HF
coherence in the excited state. For pure electronic rand
ization both eigenvalues and eigenvectors of the Liouvill
G are well known@20#, which allows us to write the steady
state solution of Eq.~A4! for arbitrarygkte :
ŝee5
te

11gkte
Ŝe1

gkte

11gkte
(

L,M ,Fe ,Fe8

te

11g̃Lte

~21!Fe2Fe8
~2Fe11!~2Fe811!

~2Je11! H Fe Fe L

I I J e
J

3H Fe8 Fe8 L

I I J e
J T̂LM~Fe Fe!Tr$T̂LM

† ~Fe8 Fe8!Ŝe%. ~A6!
0-10
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Here the source has the form

Ŝe5
g

\2 (
Fe

S (
i , j

P̂e~ d̂•Ei !P̂ i ŝggP̂ j~ d̂•Ej !
†P̂e

~g/2!21~dL2ve!
2

1(
iÞ j

P̂e~ d̂•Ei !P̂ j ŝggP̂ j~ d̂•Ei !
†P̂e

~g/2!21~dL2ve1v i2v j !
2 D ,

the relaxation rates

g̃L5gkF12(
Fe

~2Fe11!2

~2Je11! H Fe Fe L

I I J e
J 2G ,

L50, . . . ,2I 11 ~A7!

correspond to the Zeeman projections of the nuclear m
pole moments of rankL @20#, and the Wigner tensorial op
erators are defined as

T̂LM~Fa Fb!5 (
ma ,mb

uFa ,ma&A2L11 ~21!Fa2ma

3S Fa L Fb

2ma M mb
D ^Fb ,mbu.
R.

y

L

c

g,

-

03381
i-

As is seen from Eq.~A7!, the ratesg̃L are of the order ofgk

apart from g̃050. Then in the limitgkte@1, the leading
term of Eq. ~A6! corresponds to the summand withL50,
which leads directly to the solution~A5!.

When the excited-state HF coherence is negligible,
radiative repopulation term in Eq.~A3! can be written as

Â$ŝee%5
1

te
(

Fe ,i ,q

r ~Fe ,Fi !
2

3
T̂1q

† ~Fe Fi ! ŝeeT̂1q~Fe Fi !.

~A8!

One can easily prove the fundamental property

Â$P̂e%5
1

te

ne

ng
P̂g , ~A9!

which expresses the isotropy of the radiative relaxation.
Thus, we see that in the case of total collisional depo

ization of the excited state, when the excited-state den
matrix is proportional toP̂e @as shown in Eq.~A5!#, Eq.~A3!
is reduced to Eq.~6!. In addition, the expression for th
optical coherence matrix~A2! allows one to calculate variou
spectroscopic signals~as well as the total absorption!, for
example, the total dispersion.
.
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